
Princeton Competitive Programming

Dynamic Programming I

Pedro Paredes

September 30, 2022



Outline

1. Introduction

2. 1D DP

3. 2D DP

4. Interval DP

5. Bitmask DP

1



Introduction



What is DP?

Algorithm design technique based on breaking problems into

simpler subproblems

Usual workflow:

� Break the problem into overlapping subproblems

� Solve each subproblem and store the answer

� Combine the subproblems into a solution to the main

problem

Finding the right subproblem break down is part art part science

Can only be learned by looking at lots of examples

2



1D DP



Fibonacci

The well-known Fibonacci series is defined as follows:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

This is often used as an example of recursion like so:

public static int fib(int n) {

if (n <= 1)

return n;

return fib(n - 1) + fib(n - 2);

}

3



Fibonacci

How efficient is this solution?

This is the recursive tree:

Source: https://textbooks.cs.ksu.edu/cc310/6-recursion/6-example-fibonacci-numbers/

Tip: notice how the time complexity of this solution is related to the

number of leaves, which in turn is related to the actual value of Fn

4

https://textbooks.cs.ksu.edu/cc310/6-recursion/6-example-fibonacci-numbers/


Fibonacci

To avoid repeating calculations we memoize (i.e. store) the values

of each Fn after computing it:

public static int[] dp = new int[N];

public static int fib(int n) {

if (n <= 1)

return 1;

if (dp[n] > 0)

return dp[n];

return dp[n] = fib(n - 1) + fib(n - 2);

}

This is clearly much faster, but by how much?

5



Fibonacci

Suppose we use the previous code to compute Fn, what is the time

complexity in terms of n?

What happens when we call fib(i):

� if we computed fib(i) before we return it, which is O(1)

� if not, we compute it and store it, which is O(1)

Since we compute each input once, the total time is O(n)

6



Tiling

In the Fibonacci example the problem subdivision was obvious: it

was just the definition itself. So let’s look at a more interesting one

Problem

Given an integer n, find the number of ways to fill a 3× n board

with 1× 2 dominoes

Example source http://web.stanford.edu/class/cs97si/04-dynamic-programming.pdf

7

http://web.stanford.edu/class/cs97si/04-dynamic-programming.pdf


Tiling

We need to find a recurrence that breaks problem into subproblems

Let Dn be the number of ways of tiling a 3× n grid

Let An be the number of ways of tiling a 3× n grid with a “hole”

on the top-right corner

8



Tiling

Let’s try to use the previous subproblems and define a recurrence

based on trying to till the last column

9



Tiling

Based on the previous here is the recurrence:

public static int D(int n) {

if (n == 0)

return 1;

if (n == 1)

return 0;

return D(n - 2) + 2 * A(n - 1);

}

public static int A(int n) {

if (n <= 1)

return 1;

return D(n - 1) + A(n - 2);

}

Exercise: memoize the above code to make it O(n)

10



2D DP



Paths on a Grid

Problem

Given an n by n integer matrix, find a path from the upper-left

corner to the lower-right corner with the lowest sum. The path

can only move down or right.

The recurrence is the following:

dp(x , y) = min(dp(x − 1, y), dp(x , y − 1)) + gridx ,y
11



Paths on a Grid

Based on the previous here is the solution:

int[][] dp = new int[n][n];

for (int y = 1; y <= n; y++) {

for (int x = 1; x <= n; x++) {

dp[y][x] = Math.min(dp[y][x - 1], dp[y - 1][x]) + grid[y][x];

}

}

This is O(n2) since we have two nested for loops

12



Interval DP



Palindromic Edit Distance

Problem

Given a sequence of n characters x1x2 . . . xn, find the minimum

number of characters we need to add to make it a palindrome

If x = abga we can add one b and make it abgba, so the

answer is 1

We need to think about how to define some recurrence that is easy

to compute

13



Palindromic Edit Distance

Let Dij be the minimum number of characters that need to be

inserted to make xi . . . xj into a palindrome

So the solution is given by D1n

Dij =

1 + min{Di+1,j ,Di ,j−1} xi 6= xj

Di+1,j−1 xi = xj

Exercise: implement that to make it O(n2)

14



Bitmask DP



Traveling Salesman Problem

Problem

Given a complete graph with n vertices, the cost between each

pair of vertices u, v is a positive integer cu,v . Find the minimum

sum cycle that visits each vertex once.

Note that since we are looking for a cycle with all vertices, without loss of

generality we can look for cycles that start at vertex 0 and end at vertex 0

Recursion idea

Suppose we have some partially built path that is currently at a

vertex v and has visited all the vertices in a set S

Let tsp(x, S) be cheapest way to complete this path, i.e.

cheapest path that starts at x , visits all vertices in V \ S and

ends at vertex 0

15



Traveling Salesman Problem

Note that we can define the following recursion to compute

tsp(x, S):

tsp(x , S) = min
y /∈S
{tsp(y , S ∪ {y}) + cxy}

And we have a base case when S contains all vertices, i.e. S = V :

tsp(x ,V ) = cx0

Since here we have visited everyone so we have to return to 0

16



Traveling Salesman Problem - Detour: Bitmasks

How do we memoise over sets?

Note that n-bit integers represent sets: 100100 ≡ {0, 3}, 000001
≡ {5}

So we can use 32-bit integers to represent sets of up to 32 elements

Some bitwise operations on sets (suppose b is a bitmask

representing a set S and i is a vertex index):

� 1 << i is the set {i}
� (1 << N)− 1 is the set {0, . . . ,N − 1} (all numbers up to N)

� b&(1 << i) is 0 if i /∈ S and positive otherwise

� b|(1 << i) adds i to S , so it is S ∪ {i}

17



Traveling Salesman Problem

public static int[][] dp = new int[N][1 << N];

public static int tsp(int i, int S) {

if (S == ((1 << N) - 1)) {

return c[i][0];

}

if (dp[i][S] != -1) {

return dp[i][S];

}

int res = Integer.MAX_VALUE;

for (int j = 0; j < N; j++) {

if ((S & (1 << j)) > 0)

continue;

res = Math.min(res, c[i][j] + tsp(j, S | (1 << j)));

}

return dp[i][S] = res;

}

The solution to the overall problem is tsp(0, 1<<0)

This is O(2n · n2) 18


	Introduction
	1D DP
	2D DP
	Interval DP
	Bitmask DP

