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Introduction



What is DP?

Algorithm design technique based on breaking problems into

simpler subproblems

Usual workflow:

� Break the problem into overlapping subproblems

� Solve each subproblem and store the answer

� Combine the subproblems into a solution to the main

problem

Finding the right subproblem break down is part art part science

Can only be learned by looking at lots of examples
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1D DP



Fibonacci

The well-known Fibonacci series is defined as follows:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

This is often used as an example of recursion like so:

public static int fib(int n) {

if (n <= 1)

return n;

return fib(n - 1) + fib(n - 2);

}
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Fibonacci

How efficient is this solution?

This is the recursive tree:

Source: https://textbooks.cs.ksu.edu/cc310/6-recursion/6-example-fibonacci-numbers/

Tip: notice how the time complexity of this solution is related to the

number of leaves, which in turn is related to the actual value of Fn
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Fibonacci

To avoid repeating calculations we memoize (i.e. store) the values

of each Fn after computing it:

public static int[] dp = new int[N];

public static int fib(int n) {

if (n <= 1)

return 1;

if (dp[n] > 0)

return dp[n];

return dp[n] = fib(n - 1) + fib(n - 2);

}

This is clearly much faster, but by how much?
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Fibonacci

Suppose we use the previous code to compute Fn, what is the time

complexity in terms of n?

What happens when we call fib(i):

� if we computed fib(i) before we return it, which is O(1)

� if not, we compute it and store it, which is O(1)

Since we compute each input once, the total time is O(n)
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Tiling

In the Fibonacci example the problem subdivision was obvious: it

was just the definition itself. So let’s look at a more interesting one

Problem

Given an integer n, find the number of ways to fill a 3× n board

with 1× 2 dominoes

Example source http://web.stanford.edu/class/cs97si/04-dynamic-programming.pdf
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Tiling

We need to find a recurrence that breaks problem into subproblems

Let Dn be the number of ways of tiling a 3× n grid

Let An be the number of ways of tiling a 3× n grid with a “hole”

on the top-right corner
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Tiling

Let’s try to use the previous subproblems and define a recurrence

based on trying to till the last column
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Tiling

Based on the previous here is the recurrence:

public static int D(int n) {

if (n == 0)

return 1;

if (n == 1)

return 0;

return D(n - 2) + 2 * A(n - 1);

}

public static int A(int n) {

if (n <= 1)

return 1;

return D(n - 1) + A(n - 2);

}

Exercise: memoize the above code to make it O(n)
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2D DP



Paths on a Grid

Problem

Given an n by n integer matrix, find a path from the upper-left

corner to the lower-right corner with the lowest sum. The path

can only move down or right.

The recurrence is the following:

dp(x , y) = min(dp(x − 1, y), dp(x , y − 1)) + gridx ,y
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Paths on a Grid

Based on the previous here is the solution:

int[][] dp = new int[n][n];

for (int y = 1; y <= n; y++) {

for (int x = 1; x <= n; x++) {

dp[y][x] = Math.min(dp[y][x - 1], dp[y - 1][x]) + grid[y][x];

}

}

This is O(n2) since we have two nested for loops
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Interval DP



Palindromic Edit Distance

Problem

Given a sequence of n characters x1x2 . . . xn, find the minimum

number of characters we need to add to make it a palindrome

If x = abga we can add one b and make it abgba, so the

answer is 1

We need to think about how to define some recurrence that is easy

to compute
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Palindromic Edit Distance

Let Dij be the minimum number of characters that need to be

inserted to make xi . . . xj into a palindrome

So the solution is given by D1n

Dij =

1 + min{Di+1,j ,Di ,j−1} xi 6= xj

Di+1,j−1 xi = xj

Exercise: implement that to make it O(n2)
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Bitmask DP



Traveling Salesman Problem

Problem

Given a complete graph with n vertices, the cost between each

pair of vertices u, v is a positive integer cu,v . Find the minimum

sum cycle that visits each vertex once.

Note that since we are looking for a cycle with all vertices, without loss of

generality we can look for cycles that start at vertex 0 and end at vertex 0

Recursion idea

Suppose we have some partially built path that is currently at a

vertex v and has visited all the vertices in a set S

Let tsp(x, S) be cheapest way to complete this path, i.e.

cheapest path that starts at x , visits all vertices in V \ S and

ends at vertex 0
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Traveling Salesman Problem

Note that we can define the following recursion to compute

tsp(x, S):

tsp(x , S) = min
y /∈S
{tsp(y , S ∪ {y}) + cxy}

And we have a base case when S contains all vertices, i.e. S = V :

tsp(x ,V ) = cx0

Since here we have visited everyone so we have to return to 0
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Traveling Salesman Problem - Detour: Bitmasks

How do we memoise over sets?

Note that n-bit integers represent sets: 100100 ≡ {0, 3}, 000001
≡ {5}

So we can use 32-bit integers to represent sets of up to 32 elements

Some bitwise operations on sets (suppose b is a bitmask

representing a set S and i is a vertex index):

� 1 << i is the set {i}
� (1 << N)− 1 is the set {0, . . . ,N − 1} (all numbers up to N)

� b&(1 << i) is 0 if i /∈ S and positive otherwise

� b|(1 << i) adds i to S , so it is S ∪ {i}
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Traveling Salesman Problem

public static int[][] dp = new int[N][1 << N];

public static int tsp(int i, int S) {

if (S == ((1 << N) - 1)) {

return c[i][0];

}

if (dp[i][S] != -1) {

return dp[i][S];

}

int res = Integer.MAX_VALUE;

for (int j = 0; j < N; j++) {

if ((S & (1 << j)) > 0)

continue;

res = Math.min(res, c[i][j] + tsp(j, S | (1 << j)));

}

return dp[i][S] = res;

}

The solution to the overall problem is tsp(0, 1<<0)

This is O(2n · n2) 18
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