Princeton Competitive Programming

Fall 2023

Competitive Programming

Fall 2023

- Welcome to Fall 23

- Intro to Comnetitive Programming
- Problem Solving session

A few words about competitive programming

What is competitive programming?

- Solving complex problems with algorithms and math under tight time limits
- Participants use programming languages to create fast and correct solutions

Why should I do competitive programming?

- Learn problem-solving and coding skills, readying you for industry challenges
- Improve efficiency and creativity, tackling complex problems under a time limit
- Boost your resume, unlocks job and internship opportunities, and practice for interviews

What if I don't want to compete?

- Our events prioritize problem-solving and learning, with optional competition
- Look out for upcoming interview prep sessions in the fall semester, designed to specifically address interview aspects (details coming soon)

Competitive programming at Princeton

We have a website: https://competitive-programming.cs.princeton.edu/

We have a discord: \qquad

"Division II":

- For people with little or no competitive programming experience
- Problems will often have associated readings for you to learn new concepts

"Division I":

- For people with at least some competitive programming experience
- Problems of varying difficulties to target different levels of experience.

Divisions are informal and you can switch whenever you want
Problem solving sessions are supposed to be interactive and collaborative
Last 30 minutes of each session will be used for solutions discussion
Most weeks will start with a short (~ 30 minute) talk on some topic (some advanced some beginner)

Logistics

Ili CODEFORCES
 Sponsored by TON

ICPC and Competing

- Local Qualifier:

Local selection contest at Princeton in the first week of October
Participate as a team or individually in this contest
5 teams will be selected to represent Princeton at the next stage.

- Greater New York Regional Contest:

Will be held on Sunday, October 29 at Columbia University
Top ~ 5 teams qualify for the next stage, but only one per university

- North American Championship:

Will happen at some point at the end of the Spring semester in the USA The first ~ 18 teams qualify for the next stage

- ICPC World Finalls:

The last stage, date and location is yet to be announced

Note: You don't have to compete in order to benefit from these sessions!

Competitive Programming

Fall 2023

- Welcome to Fall 23

- Intro to Competitive Programming
- Problem Solving session

Intro to Competitive Programming

Problem Statement: Detailed problem statement describing the task
Input Format: Input will be provided in specific format. You need to read from standard input
Output Format: Expected format for the output also specified. Write to standard output
Testing: Output must exactly match the expected output. Even a single character difference or extra whitespace can result in a "Wrong Answer" verdict

Multiple Test Cases: Each problem has multiple test cases to evaluate correctness and efficiency
Samples: You'll get sample input and output to help you understand the problem's requirements
Hidden Test Cases: Hidden test cases evaluate your solution. You do not have access to these test cases, so your code should handle all possible inputs

Languages and Libraries: You can use any programming language and any default library
126/226 Libraries: If you are used to the special 126/226 libraries, these are NOT available on codeforces

Intro to Competitive Programming

A. To My Critics
time limit per test: 1 second memory limit per test: 256 megabytes
input: standard input
output: standard output

Suneet has three digits a, b, and c.
Since math isn't his strongest point, he asks you to determine if you can choose any two digits to make a sum greater or equal to 10 Output "YES" if there is such a pair, and "NO" otherwise.

Input
The first line contains a single integer $t(1 \leq t \leq 1000)$ - the number of test cases
The only line of each test case contains three digits $a, b, c(0 \leq a, b, c \leq 9)$.
Output
For each test case, output "YES" if such a pair exists, and "NO" otherwise
You can output the answer in any case (for example, the strings "yEs", "yes", "Yes" and "YES" will be recognized as a positive answer).
Example

input	Copy		
5			
8	1	2	
4	4	5	
9	9	9	0
9	0	0	
88	5	3	Copy
output			

output Copy

YES
NO
YES
YES
NO
Note
For the first test case, by choosing the digits 8 and 2 we can obtain a sum of $8+2=10$ which satisfies the condition, thus the output should be "YES"
For the second test case, any combination of chosen digits won't be at least 10 , thus the output should be " NO " (note that we can not choose the digit on the same position twice).

For the third test case, any combination of chosen digits will have a sum equal to 18 , thus the output should be "YES"

Intro to Competitive Programming

Competitive Programming

Fall 2023

- Welcome to Fall 23

- Intro to Competitive Programming
- Problem Solving session

