
Square Root Techniques

PEDRO PAREDES

Princeton Competitive Programming



Basic Premise

● Separate something of size O(n) into blocks of size O(sqrt(n))

● Precompute something per block and then combine answers



Problem 1: Range Queries

Problem Description:

● You are given an array A with n integers and Q queries
● Each query asks for the maximum of the elements in interval [li, ri]
● (Note: this works with any associative operation, max, min, sum, gcd, etc)

Problem Solution:

● Split A into x blocks of size n/x each (the last block might be smaller if n isn’t divisible by x)
● Compute maximum of values in block i and store in an array B 

B[i] = max{A[xi], A[xi+1], …, A[x(i+1)-1]}

● Given an interval [l, r], decompose into blocks: there will be at most 2 partial blocks and n/x full blocks
● Compute maximum in partial blocks (costs O(x)) and use precomputed value for full blocks (costs O(n/x)
● Total cost per query is O(x + n/x) so pick x=sqrt(n) and we get a cost per query of O(sqrt(n))

we’ll pick x later



Problem 1: Range Queries

Image of solution:



Problem 2: Range Queries with Updates

Problem Description:

● You are given an array A with n integers and Q queries of two types
● First query type asks for the maximum of the elements in interval [li, ri]
● Second query type asks to update the value of A[i] to v

Problem Solution:

● Same block decomposition as before
● To update value of A[i] recalculate maximum of block containing value i
● The update cost is O(sqrt(n))



Problem 3: Range Queries with Range Updates

Problem Description:

● You are given an array A with n integers and Q queries of two types
● First query type asks for the sum of the elements in interval [li, ri]
● Second query type asks to add v to each A[li … ri]

Problem Solution:

● Same solution as before, but need two extra changes:
● To update partial blocks, update each A[i] individually and recalculate the value of B
● To update full blocks, add block_size * v to the corresponding block B[i]
● You also need to store a “lazy” value per block, so you can update the A[i] if you need to access any one 

individual value



Problem 4: Range Counting

Problem Description:

● You are given an array A with n integers and Q queries of two types
● First query type asks for the number of the elements in interval [li, ri] that are equal to y
● Second query type asks to update the value of A[i] to v

Problem Solution:

● Divide into blocks as before
● Store a map/dictionary/hash table per block, storing the frequency of each element in the block
● To answer the first query, go through the partial blocks element by element and for full blocks query the 

map to determine the frequency of v
● Updating is the same, just update the map and the individual A[i]
● This takes time either O(n*sqrt(n)*log(n)) or O(n*sqrt(n)) with a hash map



Problem 5: Tree Updates

Problem Description:

● You are given a tree with n vertices each with a value vi, and Q queries of two types
● First query type asks for the value of vertex i
● Second query type asks to add y to all neighbors of vertex i

Problem Solution:

● Partition each node into one of two categories: heavy, if degree is > sqrt(n); light, if degree is < sqrt(n)
● Note that there are at most 2*sqrt(n) heavy nodes (since number of edges is < n)
● To do a query of the second type, if the node is light just go through all neighbors and add one by one. If 

the node is heavy, store a “lazy” extra value
● To do a query of the first type, add the extra values of all the heavy neighbors of i to its own value
● This takes time O(Q*sqrt(n))



Problem 6: Grid Painting

Problem Description:

● Consider a square grid with n cells that are originally unpainted
● Process n queries each of which is a cell c of the grid
● For each query, first compute the distance to the closest painted cell and then paint that cell
● (Note: you can extend this problem to a tree instead of a grid, but it’s more technical)

Problem Solution:

● Given a certain state of the grid, with one BFS running in O(n) time we can determine the distance from 
each unpainted cell to the closest painted cell

● So now we can batch the queries into blocks of sqrt(n)
● At the start of each batch, use the BFS algorithm to compute distances
● For each query, go through each cell in the batch that came before (so at most sqrt(n) of them), 

calculate the distance to c and update if it is lower than the precomputed one
● In total we run sqrt(n) BFSs, and for each query we go through a list of length at most sqrt(n), so runtime 

is O(n * sqrt(n))



Problem 7: Balanced BST

Problem Description:

● Consider an array of integers that is initially empty and process n operations:
○ Add x to the array
○ Remove x from the array
○ Find if x is in the array

Problem Solution:

● We can solve this with a balanced BST, but suppose you don’t know how to implement a balanced BST, 
but you know how to implement a normal BST

● Use an unbalanced BST and insert into it naively
● After sqrt(n) operations, reconstruct the BST so that it is now balanced
● Each reconstruction takes O(n) time, but we only do sqrt(n) of them, so this takes O(sqrt(n)) amortized 

time per operation



Problem 8: Offline Dynamic Connectivity

Problem Description:

● You are given an undirected graph G and you should process operations of three types:
○ Add an edge to the graph
○ Remove an edge from the graph
○ Check if nodes u and v are connected

Problem Solution:

● Group queries into batches of sqrt(n)
● First, fix all the edges that are contained in all sqrt(n) graphs of one batch of queries
● Collapse the graph into connected components using the fixed edges (using a DFS)
● Now for each query in one batch, add/remove the edge to the collapsed graph and run one DFS per 

check
● Since the collapsed graph has at most O(sqrt(n)) edges, each check runs in O(sqrt(n)) time



Further reading

Links:

https://assets.hkoi.org/training2023/sqrt.pdf

http://acm.math.spbu.ru/~sk1/mm/lections/mipt2016-sqrt/mipt-2016-
burunduk1-sqrt.en.pdf

https://assets.hkoi.org/training2019/sqrt.pdf

https://codeforces.com/blog/entry/23005

https://codeforces.com/blog/entry/83248

https://usaco.guide/CPH.pdf#page=263 

https://assets.hkoi.org/training2023/sqrt.pdf
http://acm.math.spbu.ru/~sk1/mm/lections/mipt2016-sqrt/mipt-2016-burunduk1-sqrt.en.pdf
http://acm.math.spbu.ru/~sk1/mm/lections/mipt2016-sqrt/mipt-2016-burunduk1-sqrt.en.pdf
https://assets.hkoi.org/training2019/sqrt.pdf
https://codeforces.com/blog/entry/23005
https://codeforces.com/blog/entry/83248
https://usaco.guide/CPH.pdf#page=263

