Square Root Techniques

Princeton Competitive Programming

Basic Premise

- Separate something of size $\mathbf{O}(\mathbf{n})$ into blocks of size $\mathrm{O}(\mathrm{sqrt}(\mathbf{n}))$
- Precompute something per block and then combine answers

Problem 1: Range Queries

Problem Description:

- You are given an array \mathbf{A} with \mathbf{n} integers and \mathbf{Q} queries
- Each query asks for the maximum of the elements in interval $\left[\mathbf{l}_{\mathbf{i}}, \mathbf{r}_{\mathbf{i}}\right]$
- (Note: this works with any associative operation, max, min, sum, gcd, etc)

Problem Solution:

 we'll pick x later- Split \mathbf{A} into \mathbf{x} blocks of size \mathbf{n} / \mathbf{x} each (the last block might be smaller if \mathbf{n} isn't divisible by \mathbf{x})
- Compute maximum of values in block \mathbf{i} and store in an array B

$$
\mathbf{B}[\mathbf{i}]=\max \{\mathbf{A}[\mathbf{x i}], \mathbf{A}[\mathbf{x i}+1], \ldots, \mathbf{A}[\mathbf{x}(\mathbf{i}+1)-1]\}
$$

- Given an interval [I, r], decompose into blocks: there will be at most 2 partial blocks and \mathbf{n} / \mathbf{x} full blocks
- Compute maximum in partial blocks (costs $O(x)$) and use precomputed value for full blocks (costs $O(n / x)$
- Total cost per query is $O(\mathbf{x}+\mathbf{n} / \mathbf{x})$ so pick $\mathbf{x}=\mathrm{sqrt}(\mathbf{n})$ and we get a cost per query of $\mathrm{O}(\mathrm{sqrt}(\mathbf{n})$)

Problem 1: Range Queries

Image of solution:

Problem 2: Range Queries with Updates

Problem Description:

- You are given an array \mathbf{A} with \mathbf{n} integers and \mathbf{Q} queries of two types
- First query type asks for the maximum of the elements in interval $\left[\mathbf{I}_{\mathbf{i}}, \mathbf{r}_{\mathbf{i}}\right]$
- Second query type asks to update the value of A[i] to v

Problem Solution:

- Same block decomposition as before
- To update value of $\mathbf{A}[\mathbf{i}]$ recalculate maximum of block containing value \mathbf{i}
- The update cost is $\mathrm{O}(\mathrm{sqrt}(\mathbf{n}))$

Problem 3: Range Queries with Range Updates

Problem Description:

- You are given an array \mathbf{A} with \mathbf{n} integers and \mathbf{Q} queries of two types
- First query type asks for the sum of the elements in interval $\left[\mathbf{I}_{\mathbf{i}}, \mathbf{r}_{\mathbf{i}}\right]$
- Second query type asks to add \mathbf{v} to each $A\left[I_{i} . . . \mathbf{r}_{\mathbf{i}}\right]$

Problem Solution:

- Same solution as before, but need two extra changes:
- To update partial blocks, update each $\mathbf{A}[\mathbf{i}]$ individually and recalculate the value of \mathbf{B}
- To update full blocks, add block_size * v to the corresponding block B[i]
- You also need to store a "lazy" value per block, so you can update the $\mathbf{A}[i]$ if you need to access any one individual value

Problem 4: Range Counting

Problem Description:

- You are given an array \mathbf{A} with \mathbf{n} integers and \mathbf{Q} queries of two types
- First query type asks for the number of the elements in interval $\left[\mathbf{I}_{\mathbf{i}}, \mathbf{r}_{\mathbf{i}}\right]$ that are equal to \mathbf{y}
- Second query type asks to update the value of $\mathbf{A}[i]$ to \mathbf{v}

Problem Solution:

- Divide into blocks as before
- Store a map/dictionary/hash table per block, storing the frequency of each element in the block
- To answer the first query, go through the partial blocks element by element and for full blocks query the map to determine the frequency of \mathbf{v}
- Updating is the same, just update the map and the individual $\mathbf{A}[\mathbf{i}]$
- This takes time either $\mathrm{O}\left(\mathbf{n}^{*} \operatorname{sqrt}(\mathbf{n})^{*} \log (\mathbf{n})\right)$ or $\mathrm{O}\left(\mathbf{n}^{*} \mathrm{sqrt}(\mathbf{n})\right)$ with a hash map

Problem 5: Tree Updates

Problem Description:

- You are given a tree with \mathbf{n} vertices each with a value $\mathbf{v}_{\mathbf{i}}$, and \mathbf{Q} queries of two types
- First query type asks for the value of vertex \mathbf{i}
- Second query type asks to add \mathbf{y} to all neighbors of vertex \mathbf{i}

Problem Solution:

- Partition each node into one of two categories: heavy, if degree is > sqrt(n); light, if degree is < sqrt(n)
- Note that there are at most 2^{*} sqrt(\mathbf{n}) heavy nodes (since number of edges is < \mathbf{n})
- To do a query of the second type, if the node is light just go through all neighbors and add one by one. If the node is heavy, store a "lazy" extra value
- To do a query of the first type, add the extra values of all the heavy neighbors of \mathbf{i} to its own value
- This takes time $\mathbf{O}\left(\mathbf{Q}^{*} \operatorname{sqrt}(\mathbf{n})\right.$)

Problem 6: Grid Painting

Problem Description:

- Consider a square grid with \mathbf{n} cells that are originally unpainted
- Process \mathbf{n} queries each of which is a cell \mathbf{c} of the grid
- For each query, first compute the distance to the closest painted cell and then paint that cell
- (Note: you can extend this problem to a tree instead of a grid, but it's more technical)

Problem Solution:

- Given a certain state of the grid, with one BFS running in $O(n)$ time we can determine the distance from each unpainted cell to the closest painted cell
- So now we can batch the queries into blocks of sqrt(n)
- At the start of each batch, use the BFS algorithm to compute distances
- For each query, go through each cell in the batch that came before (so at most sqrt(n) of them), calculate the distance to \mathbf{c} and update if it is lower than the precomputed one
- In total we run sqrt(n) BFSs, and for each query we go through a list of length at most sqrt(n), so runtime is $O(\mathbf{n} * \operatorname{sqrt}(\mathbf{n})$)

Problem 7: Balanced BST

Problem Description:

- Consider an array of integers that is initially empty and process \mathbf{n} operations:
- Add \mathbf{x} to the array
- Remove \mathbf{x} from the array
- Find if \mathbf{x} is in the array

Problem Solution:

- We can solve this with a balanced BST, but suppose you don't know how to implement a balanced BST, but you know how to implement a normal BST
- Use an unbalanced BST and insert into it naively
- After sqrt(n) operations, reconstruct the BST so that it is now balanced
- Each reconstruction takes $\mathrm{O}(\mathbf{n})$ time, but we only do sqrt(\mathbf{n}) of them, so this takes O (sqrt(\mathbf{n})) amortized time per operation

Problem 8: Offline Dynamic Connectivity

Problem Description:

- You are given an undirected graph \mathbf{G} and you should process operations of three types:
- Add an edge to the graph
- Remove an edge from the graph
- Check if nodes \mathbf{u} and \mathbf{v} are connected

Problem Solution:

- Group queries into batches of sqrt(n)
- First, fix all the edges that are contained in all sqrt(n) graphs of one batch of queries
- Collapse the graph into connected components using the fixed edges (using a DFS)
- Now for each query in one batch, add/remove the edge to the collapsed graph and run one DFS per check
- Since the collapsed graph has at most $\mathrm{O}(\mathrm{sqrt(n)})$ edges, each check runs in $\mathrm{O}(\mathrm{sqrt}(\mathbf{n}))$ time

Further reading

Links:
https://assets.hkoi.org/training2023/sqrt.pdf
http://acm.math.spbu.ru/~sk1/mm/lections/mipt2016-sqrt/mipt-2016-
burunduk1-sqrt.en.pdf
https://assets.hkoi.org/training2019/sqrt.pdf
https://codeforces.com/blog/entry/23005
https://codeforces.com/blog/entry/83248
https://usaco.guide/CPH.pdf\#page=263

