PEDRO PAREDES

Square Root Techniques

Princeton Competitive Programming

Basic Premise

e Separate something of size O(n) into blocks of size O(sqrt(n))

e Precompute something per block and then combine answers

Problem 1: Range Queries

Problem Description:

e You are given an array A with n intfegers and Q queries
e Each query asks for the maximum of the elements in interval [l r,]
e (Note: this works with any associative operation, max, min, sum, gcd, etc)

Problem Solution: we’ll pick x later

Split A into x blocks of size n/x each (the last block might be smaller if n isn’t divisible by x)
Compute maximum of values in block i and store in an array B

B[i] = max{A[xi], A[Xi+1], .., A[x(i+1)-1]}

Given an interval [1, r], decompose into blocks: there will be at most 2 partial blocks and n/x full blocks
Compute maximum in partial blocks (costs O(x)) and use precomputed value for full blocks (costs O(n/x)
Total cost per query is O(x + n/x) so pick x=sqrt(n) and we get a cost per query of O(sqrt(n))

l Problem 1: Range Queries

Problem 2: Range Queries with Updates

Problem Description:

e You are given an array A with n integers and Q queries of two types
e First query type asks for the maximum of the elements in interval [, r.]
e Second query type asks to update the value of A[i] to v

Problem Solution:

e Same block decomposition as before
e To update value of A[i] recalculate maximum of block containing value i
e The update cost is O(sqrt(n))

Problem 3: Range Queries with Range Updates

You are given an array A with n integers and Q queries of two types
First query type asks for the of the elements in interval [, r.]
Second query type asks to add v to each A[L. ... r,]

Same solution as before, but need two extra changes:

To update partial blocks, update each A[i] individually and recalculate the value of B

To update full blocks, add block_size * v to the corresponding block B[i]

You also need to store a “lazy” value per block, so you can update the A[i] if you need to access any one
individual value

Problem 4: Range Counting

Problem Description:

e You are given an array A with n integers and Q queries of two types
e First query type asks for the number of the elements in interval [L, r.] that are equal to y
e Second query type asks to update the value of A[i]to v

Problem Solution:

Divide into blocks as before

Store a map/dictionary/hash table per block, storing the frequency of each element in the block

To answer the first query, go through the partial blocks element by element and for full blocks query the
map to determine the frequency of v

Updating is the same, just update the map and the individual A[i]

This takes time either O(n*sqgrt(n)*log(n)) or O(n*sqrt(n)) with a hash map

Problem 5: Tree Updates

You are given a tree with n vertices each with a value v,, and Q queries of two types
First query type asks for the value of vertex i
Second query type asks to add y to all neighbors of vertex i

Partition each node into one of two categories: heavy, if degree is > sqrt(n); light, if degree is < sqrt(n)
Note that there are at most 2*sqrt(n) heavy nodes (since number of edges is < n)

To do a query of the second type, if the node is light just go through all neighbors and add one by one. If
the node is heavy, store a “lazy” extra value

To do a query of the first type, add the extra values of all the heavy neighbors of i to its own value

This takes time O(Q*sqrt(n))

Problem 6: Grid Painting

Consider a square grid with n cells that are originally unpainted

Process n queries each of which is a cell ¢ of the grid

For each query, first compute the distance to the closest painted cell and then paint that cell
(Note: you can extend this problem to a tree instead of a grid, but it’s more technical)

Given a certain state of the grid, with one BFS running in O(n) time we can determine the distance from
each unpainted cell to the closest painted cell

So now we can batch the queries into blocks of sqrt(n)

At the start of each batch, use the BFS algorithm to compute distances

For each query, go through each cell in the batch that came before (so at most sqrt(n) of them),
calculate the distance to ¢ and update if it is lower than the precomputed one

In total we run sqrt(n) BFSs, and for each query we go through a list of length at most sqrt(n), so runtime
is O(n * sqrt(n))

Problem 7: Balanced BST

Problem Description:

e Consider an array of integers that is initially empty and process n operations:
o Add x to the array

o Remove x from the array
o Find if x is in the array

Problem Solution:

We can solve this with a balanced BST, but suppose you don’t know how to implement a balanced BST,
but you know how to implement a normal BST

Use an unbalanced BST and insert into it naively
After sqrt(n) operations, reconstruct the BST so that it is now balanced

Each reconstruction takes O(n) time, but we only do sqrt(n) of them, so this takes O(sqrt(n)) amortized
time per operation

Problem 8: Offline Dynamic Connectivity

You are given an undirected graph G and you should process operations of three types:
o Add an edge to the graph
o Remove an edge from the graph
o Check if nodes u and v are connected

Group queries into batches of sqrt(n)

First, fix all the edges that are contained in all sqrt(n) graphs of one batch of queries

Collapse the graph into connected components using the fixed edges (using a DFS)

Now for each query in one batch, add/remove the edge to the collapsed graph and run one DFS per
check

Since the collapsed graph has at most O(sqrt(n)) edges, each check runs in O(sqrt(n)) time

Further reading

Links:

hitps://assets.hkoi.org/traininqg2023/sqrt.pdf

hitp://acm.math.spbu.ru/~skl/mm/lections/mip1t2016-sqart/mipt-2016-

burunduk1l-sqgrt.en.pdf
hitps://assets.hkoi.org/training2019/sqrt.pdf

https://codeforces.com/blog/entry/23005

https://codeforces.com/blog/entry/83248
https://usaco.guide/CPH.pdf#page=263

https://assets.hkoi.org/training2023/sqrt.pdf
http://acm.math.spbu.ru/~sk1/mm/lections/mipt2016-sqrt/mipt-2016-burunduk1-sqrt.en.pdf
http://acm.math.spbu.ru/~sk1/mm/lections/mipt2016-sqrt/mipt-2016-burunduk1-sqrt.en.pdf
https://assets.hkoi.org/training2019/sqrt.pdf
https://codeforces.com/blog/entry/23005
https://codeforces.com/blog/entry/83248
https://usaco.guide/CPH.pdf#page=263

